Thermal ablation with configurable shapes: a comprehensive

$ 16.50

4.8 (458) In stock

Background Malignant tumors routinely present with irregular shapes and complex configurations. The lack of customization to individual tumor shapes and standardization of procedures limits the success and application of thermal ablation. Methods We introduced an automated treatment model consisting of (i) trajectory and ablation profile planning, (ii) ablation probe insertion, (iii) dynamic energy delivery (including robotically driven control of the energy source power and location over time, according to a treatment plan bespoke to the tumor shape), and (iv) quantitative ablation margin verification. We used a microwave ablation system and a liver phantom (acrylamide polymer with a thermochromic ink) to mimic coagulation and measure the ablation volume. We estimated the ablation width as a function of power and velocity following a probabilistic model. Four representative shapes of liver tumors < 5 cm were selected from two publicly available databases. The ablated specimens were cut along the ablation probe axis and photographed. The shape of the ablated volume was extracted using a color-based segmentation method. Results The uncertainty (standard deviation) of the ablation width increased with increasing power by ± 0.03 mm (95% credible interval [0.02, 0.043]) per watt increase in power and by ± 0.85 mm (95% credible interval [0, 2.5]) per mm/s increase in velocity. Continuous ablation along a straight-line trajectory resulted in elongated rotationally symmetric ablation shapes. Simultaneous regulation of the power and/or translation velocity allowed to modulate the ablation width at specific locations. Conclusions This study offers the proof-of-principle of the dynamic energy delivery system using ablation shapes from clinical cases of malignant liver tumors. Relevance statement The proposed automated treatment model could favor the customization and standardization of thermal ablation for complex tumor shapes. Key points • Current thermal ablation systems are limited to ellipsoidal or spherical shapes. • Dynamic energy delivery produces elongated rotationally symmetric ablation shapes with varying widths. • For complex tumor shapes, multiple customized ablation shapes could be combined. Graphical Abstract

Effect of Non-parallel Applicator Insertion on 2.45 GHz Microwave Ablation Zone Size and Shape

Cancers, Free Full-Text

Representative illustrations of the radiofrequency volumetric thermal

Frontiers First-in-man application of Liwen RF™ ablation system in the treatment of drug-resistant hypertrophic obstructive cardiomyopathy

Correlation between EAV and PAV for the Acculis, Amica and Solero

Schematic illustration of the assessment of ablation probe trajectory

Micromachines, Free Full-Text

Schematic illustration of the assessment of ablation probe trajectory

Calculation of ablation volume irregularity (AVI) of effective ablation

Ablation Process - an overview

Effect of Non-parallel Applicator Insertion on 2.45 GHz Microwave Ablation Zone Size and Shape

Thermal tumor ablation in clinical use. - Abstract - Europe PMC

A Lattice-Tip Temperature-Controlled Radiofrequency Ablation Catheter: Durability of Pulmonary Vein Isolation and Linear Lesion Block - ScienceDirect

Related products

Compressão secagem rápida Thermal Underwear para mulher Sports funcional Long Johns Body Shaper - China Conjunto de vestuário interior desportivo funcional e Long Johns for Winter preço

Body heat bends shape-memory polymer out of shape - Materials Today

เครื่องควบคุมอุณหภูมิความร้อนแม่พิมพ์ (ชนิดน้ำ)

Shapewear Womens Thermal Hip Hugger Slimming Waist Cincher Reducer Clothing

Hot Thermal Shirt Body Shaper For Weight Loss - Sale price - Buy online in Pakistan